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Various Fourier pseudospectral methods are used to approximate the Korteweg-de Vries 
equation. The methods differ in their treatment of the time discretisation. The methods are 
compared for computational efficiency using the l- and 2-soliton test problems. They are also 
compared from an accuracy viewpoint using the Zabusky-Kruskal recurrence problem. 
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1. INTRODUCTION 

The interest in nonlinear wave phenomena has experienced a rapid growth in 
recent years and the Korteweg-de Vries equation (KdV) has played a central role 
in this recent development. The KdV equation was originally introduced [S] to 
describe the behaviour of small amplitude water waves in one dimension. More 
recently the equation has been used to describe phenomena such as ion-acoustic 
waves in plasma physics, longitudinal dispersive waves in elastic rods, and pressure 
waves in liquid-gas bubble mixtures. Nonlinear dispersive wave equations, as 
typified by the KdV equation, exhibit an array of fascinating solutions such as 
solitary waves, solitons, and recurrence [3]. The existence of such solutions, 
together with the ubiquity of specific equations like the KdV, has been the source 
of the intense interest in this type of partial differential equation. 

The inverse scattering method has been used to produce some analytic solutions 
of nonlinear dispersive wave equations such as the KdV equation [6]. However, its 
usefulness as a general tool is limited, and the availability of accurate and efficient 
numerical methods is therefore essential. The numerical solution of nonlinear dis- 
persive wave equations has been the subject of many papers over the last two 
decades. Zabusky and Kruskal [20] employed a second-order accurate leap-frog 
scheme for the KdV equation. Dissipative difference methods were used by 
Vliegenthart [ 191, Galerkin methods by Alexander and Morris [ 11, and 
Petrov-Galerkin methods by Sanz-Serna and Christie [ 1 l] and by Schoomhie 
Cl51. 

Ideally a numerical method should be free of phase errors and it should simulate 
the conservation properties of the differential equation. These properties have been 
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discussed by Sanz-Serna. [12] and he has proposed a variable-step method which 
satisfies the first two of the infinite set of conservation conditions associated with 
the KdV equation. Taha and Ablowitz [17] used the inverse scattering transform 
to construct a global scheme which satisfies the complete set of conservation laws. 
However, this interesting scheme is likely to be too complicated to be of much prac- 
tical use. A second scheme is proposed by Taha and Ablowitz [17] which, albeit 
fully, implicit, is much less cumbersome. This so-called local scheme seems to be 
very attractive in terms of computational efficiency, as pointed out in the following 
paragraph. 

Fourier spectral methods have been applied to the KdV equation by, for exam- 
ple, Tappert [18], Schamel and ElsHsser [14], Fornberg and Whitham [S], and 
Chan and Kerkhoven [2]. A recent study by Taha and Ablowitz [17] compared 
the efficiencies of various numerical methods for the KdV equation. Their study 
included the Fourier pseudospectral method of Fornberg and Whitham [S], 
together with an improved form of the split-step Fourier method proposed by Tap- 
pert [ 181. Results obtained by Taha and Ablowitz suggest that the Fourier spectral 
method provides an extremely efficient numerical method for the KdV equation. In 
the efficiency tests the authors found that the best method was their aforementioned 
local scheme and that this was followed closely by the pseudospectral method of 
Fornberg and Whitham [S]. These findings provide some motivation for the 
present study. The aim here is to extend the valuable study of Taha and Ablowitz 
to compare several Fourier pseudospectral methods. We are particularly interested 
in comparing methods which adopt different approaches to the time discretisation. 
Our search for an efficient time-stepping technique will initially follow the same 
lines as those adopted by Taha and Ablowitz. We use various methods to integrate 
the equation 

u, + 6uu, + u,, = 0 (1.1) 

over a time interval from t = 0 to t = T, with initial conditions which match the 
analytic 1-soliton and 2-soliton solutions (see, for example, Hirota [7]). Details of 
these test problems, together with comments on the spatial discretisation of (1.1 ), 
are given in Section 2. For the efficiency comparison the maximum acceptable 
point-wise error at t = T is specified and the parameters such as time-step are 
adjusted to minimise the computing time, subject to this error constraint. Section 3 
describes the various time-stepping methods used in the efficiency tests and 
Section 4 gives numerical results for these tests. 

In Section 4 the pseudospectral methods are also compared from an accuracy 
viewpoint by investigating how capable they are of reproducing the recurrence 
phenomenon described by Zabusky and Kruskal [20]. Comments and conclusions 
are contained in Section 5. 
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2. ONE- AND TWO-S• LITON TEST PROBLEMS 

The exact 1-soliton solution of (1.1) on the infinite interval is 

u(x, t) = 2k2 sech’(kx - 4k3t + Q,), (2.1) 

where k and q,, are constants, with k > 0. This represents a soliton of amplitude 2k2 
initially located at x = -qo/k and moving with velocity 4k2. 

The exact 2-soliton solution of (1.1) on the infinite interval is 

4x7 t) = 2 -$ ClO&f(X, t)], (2.2) 

with 

f(x, t) = 1 + e’” + eq* + 

and 

vi = qi(x, t) = kjx -k; t + tj;“‘, 

where ki and r,ry) are constants for i= 1,2. The constants k, and k, are both taken 
to be positive. For i = 1, 2 soliton i has amplitude kf/2 and it is moving with 
velocity kf from an initial location x = -qi”)/ki. 

To permit a numerical solution of (1.1) we assume that the l- and 2-soliton solu- 
tions satisfy the periodicity condition u(x + 2L, t) = u(x, t), for (x, t) E R x [0, T]. 
Accordingly, we consider numerical solutions in the region -L < x< L, with the 
positive constant L sufficiently large for the periodicity condition to be acceptable. 
To simplify the presentation of Fourier methods it is now convenient to transform 
the spatial variable in (1.1) to X= (n/L)(x + L), giving a 2rr-periodic dependent 
variable u(X, t) which satisfies 

u, + 6suv, + s3uxxx = 0, 

with s denoting rc/L. 

(X 2) E R x co, n (2.3) 

To solve (2.3) by a pseudospectral method the interval [0,27r] is discretised by 
N + 1 equidistant points with spacing dX= 2n/N, and u( ., t) is approximated by 
V( ., t) E RN, which has the value V(Xj, t) at X= Xi= jdX, j=O, 1, . . . . N - 1. The 
vector V( ., t) is transformed to discrete Fourier space by 

P(p, t) = (FV( -, t))(p) =-!- Nf’ V(Xj, t) eC2”‘iplN, 
fij=O 

p= -$ -;+1,..., 4. 

(2.4) 
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We assume N is even, with M= N/2, and note that p( -M, t) = p((M, t). One 
should also note, of course, that since V(., t) E RN then @Co, t) and v(icM, t) are real 
and p( - p, t) is the complex conjugate of f(p, t) for p = 1,2, . . . . M - 1. The inver- 
sion formula for the discrete Fourier transform (2.4) is 

V(X,,t)=(F-‘~(.,t))(X,)=i 

M-l 

fi =C_ V(p, t) e2niipiN, 
P M 

j=O, 1, . . . . N- 1. 
(2.5) 

The transformations in (2.4) and (2.5) can be performed efficiently by means of the 
fast Fourier transform algorithm (FFT). Derivatives of v with respect to X may also 
be approximated efficiently by the FFT algorithm: for example, the qth derivative 
at (Xi, t) is given by (F-‘g( ., t))(Xj), where g(p, t) = (ip)’ p(p, t). Fornberg [4] 
has shown how this representation of derivatives of periodic functions is related to 
central difference approximations of infinite order. 

Periodic solutions of (2.3) satisfy an infinite sequence of conservation laws and 
the accuracy of the numerical solutions of the test problems is checked using two 
of these laws. Like Taha and Ablowitz, we approximate the conditions 

s 2n [v(X, t)12 dX= Cl 
0 

and 

I 2n {2[v(x, t)13 -s’[v&Y, t)]‘} dX= Cz 
0 

(2.6) 

(2.7) 

using Simpson’s rule and compare these approximations to the exact values of C, 
and CZ. 

3. NUMERICAL METHODS USED FOR THE KdV EQUATION 

The following pseudospectral schemes are used to approximate the l- and 
2-soliton solutions of ( 1.1): 

(i) the leap-frog scheme of Fornberg and Whitham [5]; 
(ii) the semi-implicit scheme of Chan and Kerkhoven [a]; 
(iii) the modified basis function scheme of Chan and Kerkhoven [a]; 
(iv) a split-step scheme based on Taylor expansion; 
(v) a split-step scheme based on characteristics; 

(vi) a quasi-Newton implicit method. 

Method (i) was considered by Taha and Ablowitz [17] and it is included in order 
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to provide a link between their comparative study and the present work. This was 
the more efficient of the two Fourier methods considered by Taha and Ablowitz. 

3.1. Outline of methods (i), (ii), and (iii) 

(i) Fornberg and Whitham [S]. If we approximate spatial derivatives in (2.3) 
using discrete Fourier transforms, as described in Section 2, and combine this with 
a leap-frog discretisation in time we obtain 

V(Xj, t + At) = V(Xj, t-At) - 12s At V(Xj, t)(F-‘(z$(p, t)))(Xj) 

+ 2s3 At(F-‘(ip3f(p, t)))(Xj), (3.1) 

where At denotes the time step. Fornberg and Whitham modified the final term in 
(3.1) to produce the scheme 

V(Xj, t + At) = V(Xj, t-At) - 12s AtiV(Xj, t)(F-‘(pf(p, t)))(Xj) 

+ 2i(F-‘(sin(s3p3 At) p(p, t)))(Xj), (3.2) 
which is likely to be more accurate than (3.1) in situations where dispersion 
dominates nonlinearity in (2.3). Indeed, the linear part of (3.2) is exactly satisfied 
by any solution of the linear part of (2.3). Furthermore, the linearised stability 
condition for (3.2) is 

(3.3) 

whereas (3.1) is subject to the more restrictive condition At < (2~7N)~ 0.0323. (See 
[S] for a linear stability analysis.) 

Note that implementation of (3.2) requires three FFTs per time step. 

(ii) Semi-implicit scheme of Chan and Kerkhoven [2]. Chan and Kerkhoven 
integrated the KdV equation in time in Fourier space, using a Crank-Nicolson 
method for the linear term and a leap-frog method for the nonlinear term. The 
nonlinear term, 6suu,, in (2.3) is initially re-written as wX, where w = 3.~27~. In the 
algorithm below W(Xj, t) denotes the approximation to w(Xj, t). 

ALGORITHM. Given V(Xj, t), V(Xj, t-At), p(p, t), p(p, t-At) for j= 0, 1, . . . . 
N- 1 and p= -M, -M+ 1, . . . . M- 1. 

1. Form W(Xj, t) = 3s[ V(Xj, t)]*, j= 0, 1, . . . . N- 1. 
2. Transform for @‘(p, t) = (F( W( ., t)))(p), p = -M, -M+ 1, . . . . M- 1. 
3. Solve 

p(p, t+ At) 

=~(p,t-Adt)-2ipAt~(p,t)+iAts3p3[~(p,t+At)+~(p,t-At)] 

for fl(p, t + At), p= -&I, -M+ 1, . . . . M- 1. 
4. Invert for I’(Xj, r + At) = (F-‘( p( ., t + At)))(X]), j= 0, 1, . . . . N- 1. 
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The semi-implicit method requires only two FFTs per time step. Apart from this 
favourable property a linear stability analysis indicates that the time step is not sub- 
ject to the usual 0(NP3) restriction which appears in (3.3). The authors obtained 
linear stability conditions dependent on the relative magnitudes of the first and 
third derivative terms, and on the spectrum of frequencies being represented. For 
the l- and 2-soliton test problems the linear stability restriction may be written as 

where /I denotes the maximum value of IuI and is therefore 2k2 and 5 max(kT, kg) 
for the l- and 2-soliton problems, respectively. 

(iii) Modified basis function scheme of Chan and Kerkhoven [2]. This method 
uses solutions to the linear dispersive part of the KdV equation as basis functions 
for a pseudospectral method. The scheme is likely to be more accurate, therefore, 
in situations where dispersion dominates nonlinearity. An approximation to u(X, t) 
is sought in the form 

M-l 
V(X, t) = C V(p, t) ei(pX+s3p3t), 

p= --M 

and w = 3.~0’ is replaced by an expansion of this type with coefficients m(p, t). Note 
that V(p, t) = p(p, t) e-iSP3* and P(p, t) = W(p, t) e-iS3P3* in the notation used in 
(i) above. The method is conveniently represented in algorithmic form. 

ALGORITHM. Given V(p, t), V( p, t - At) for p = - M, - A4 + 1, . . . . M - 1. 

1. Form p(p, t)= V(p, t)eGp3’, p= -M, -M+ 1, . . . . M- 1. 
2. Invert for V(Xi, t) = (F-‘( P( ., t)))(Xj), j= 0, 1, . . . . N- 1. 
3. Form W(Xj, t)=3s[V(Xj, t)12,j=0, l,..,, N-l. 
4. Transform for F&‘(p, t) = (F( W( ., t)))(p) 

and hence m(p, t)= l@(p, t)e-jgp3’, p= -M, --M+ 1, . . . . M- 1. 
5. Update P using 

qp, t+dt)= V(p, t-At)-2zjJdt Fqp, t), p= -IV, -M+ 1, . . . . M- 1. 

As for the semi-implicit method, this algorithm requires only two FFTs per time 
step. A linear stability analysis gives the condition 

(3.5) 

where /I is as defined in (3.4). This O(N -‘) condition is less restrictive than the 
Fornberg and Whitham condition (3.3). 
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3.2. A New Split-Step Scheme Based on Taylor Expansion 

In this method we advance the solution of (2.3) in two stages at each time step: 
the first stage involves the solution of the nonlinear equation 

u, + 6suu, = 0 (3.6) 

using a Lax-Wendroff [9] formulation of the Taylor expansion, and the output 
from this stage serves as an initial condition for the linear equation 

u, + s3uxx* = 0. (3.7) 

To advance the solution of Eq. (3.6) we employ the identities 

g=(-6s)q&(5), 4 = 1, 2, . . . 

satisfied by solutions of this equation. These enable us to write the Taylor expan- 
sion as 

u(X, t+dt)=u(X, t)-(6sdt)a ‘[ (X t)]* 
a*{2u’ > 

The discrete Fourier transform of u( ., t + At) is evaluated using terms up to O(dt)3 
and this transform provides the initial condition for the solution of (3.7) in Fourier 
space. The split-step algorithm is presented below. 

ALGORITHM. Given V(&, t), p(p, t) for j = 0, 1, . . . . N - 1 and p = - M, 
--M+ 1, . ..) M- 1. 

1. Form W(Xi, t) = i[ V(X,, t)]*, Y(X,, t) = fV(Xj, t) W(Xj, t) and 
Z(Xj, t) = iV(Xj, t) Y(Xj, t), j= 0, 1, . . . . N- 1. 

2. Transform for &‘(p, t) = (F( W( ., t)))(p), f(p, t) = (F( Y( ., t)))(p) 
and &p, t)= (F(Z( ., t)))(p), p= -M, -M+ 1, . . . . M- 1. 

3. Forp= -M, -M+l,..., M-l set q=6spdt and form 
P*(p, t + At) = Qp, t) - ivF@(p, t) - u2f(p, t) + iff3i(p, t). 

4. Form ~(p,t+~It)=~*(p,t+dt)e’~~~~~‘,p=-M, --M+l,..., M-l. 
5. Invert for V(Xi, t+dt)=(F-‘(f(., t+dt)))(Xj), j=O, 1, . . . . N- 1. 

The expansion in step 3 must be taken as far as O(At)3 to satisfy the linear 
stability condition and, as a result, four FFTs are required per time step. 
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Linear Stability 

If the method is applied to the linear, constant coefficient equation 

v, + 6s#Iv, + s3vxxx = 0, 

the solution in discrete Fourier space provided by the algorithm is 

(3-g) 

where G(s, p, /3, At) = [1 - i/-l? - $12~2 + (i/6) p3q3] eip3s3 “. 
Hence IG12 = 1 + (/14q4/36)(/12~2 - 3) and the method is therefore linearly stable 

if /12$ < 3 for p = 0, 1, . . . . M. 
The linear stability condition for the split-step scheme may therefore be written 

as 

At&3. (3.9) 

It is readily shown that the numerical solution satisfies the discrete “mass” 
conservation condition xrzd V(X,, t) =constant. Combine steps 3 and 4 of the 
algorithm and note that 

iv @(p, t) eip3,’ d’ = y;gl [JqX,, t)]2pZ-ipeip3s3Al=P(p), 
I 0 

say, where z is an Nth root of unity and is given by z = eZnilN. Hence 

(F-w)))(&) =- 

and the summation cf:d (F-‘(p( -)))(.X,J is trivially zero. 
The contribution to the total mass arising from the term involving I$’ in step 

three is therefore zero, and analogous results hold for the terms involving ? and 2. 
The contribution from the term involving p is 

N-l M-l 

1 1 V(Xj, t) z-jpeip3s3 Al do,p, 

j=O p= -&f 

where 6,,, is the Kronecker delta. The conservation result now follows immediately. 

Split-Step Error 

A question which one might ask in relation to the split-step scheme described in 
this section is whether or not time splitting introduces significant discretisation 
errors. This question has been addressed, inter alias, by Strang [16] and by 
Leveque and Oliger [lo]. A recent paper by Sanz-Serna and Verwer [13] also 
considered this matter in the context of time-splitting for nonlinear dispersive wave 
equations. 
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To examine split-step errors for the spectral method considered here we are at 
liberty to ignore spatial discretisation errors and consider only errors associated 
with the time discretisation. For convenience, drop the X dependence and let 
o*(t+ At) be the solution of the nonlinear equation (3.6) given by the expansion 
method. The final solution at time t + At given by the two-stage process may be 
written as 

u(~+A~)=[~-~~A~D~+&s~Ac~D~-~s~A~~D~+ . ..]u*(t+At). (3.10) 

where DE a/at. The linear stage of the solution is exact and the above expansion 
may therefore be regarded as infinite in extent. If the solution of the complete 
equation (2.3) given by an analogous method is denoted by v@)(t + At) then the 
split-step error is 

Esplit = ~“‘(t + At) - ~(t + At) = -9~~ At’[D(u) D3(u) + (D’(U))‘] + O(At)3, 

where u E u(t). This error arises from the non-commutativity of the linear and 
nonlinear spatial differentiation operators and one notes, for example, that if the 
method is applied to the linear, constant coefficient equation (3.8) then Esplit = 0. 

The total error involved in integrating from time t to time t + At is the sum of 
Esplit and the discretization error of the nonlinear step. Since the expansion used 
contains terms up to O(At)3 it follows that the total error is dominated by ,?&,. 
Strang [16] has shown that Esriit may be improved if the operators are applied in 
a symmetric manner. If we denote the solution (3.10) by 

u(t + At) = Y(At) u*(t + At) = Y(At) Jlr(At) u(t), 

where Y and .N are the linear and nonlinear operators, respectively, then the 
symmetric implementation has the form 

(3.11) 

It is readily shown that for this method E,,,i, = O(At)3 and the complete solution 
process is then second order in time. If integration is performed over a large 
number of steps between printouts the half-step operations in (3.11) are only 
required at the beginning and at the end of the sequence of steps. Henceforth, we 
assume that any split-step calculations referred to in this paper are performed using 
the symmetric implementation (3.11). 

3.3. A New Split-Step Scheme Based on Characteristics 

Here again we split the operator and solve (3.6) followed by (3.7) to advance the 
solution over one time step. Since the solution u(X, t) of (3.6) is constant along any 
integral curve of the characteristics equation dX/dt = 6sv we can deduce that 

u(Xj, t + At) = u(tj, t), (3.12) 
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where Xj = tj + 6s At u(rj, t). If we write tj = Xj + 0, AX then 6, is the solution of 

~j+6slu(Xj+BjAX, t)=O, (3.13) 

where 1= At/AX. This equation is solved approximately using a fixed-point 
iteration in which u(Xj + 19, AX, t) is replaced by a polynomial interpolant Pj21) 
(0,; AX, t) of degree 21 which fits the computed solution I’( ., t) at 2f+ 1 nodes in 
the neighbourhood of Xi. The approximation to 8, is given by the iteration 

0;” = - 6slV(Xj, t), 

f?!‘+ ‘) = - ~s,IP’~“(~,“‘; AX, t), 
J 

v = 1, 2, . . . 
(3.14) 

and the solution of the nonlinear step is then given by (3.12) in the form 

?‘*(& t + At) = Pj21)(0j; AX, t). (3.15) 

For the l- and 2-soliton problems V*(Xj, t + At) is the set to zero at nodes near the 
boundaries then (3.14) and (3.15) are used at the remaining nodes. The integration 
from t to t + At is described below. 

ALGORITHM. Given V(Xj, t) for j = 0, 1, . . . . N. 

1: V*(Xj, t+At) :=0 forj=O, 1, . . . . I-1 andj=N-I+ 1, N-1+2, . . . . N. 
2: V*(Xj, t+At) given by (3.14) and (3.15) forj=l, I+ 1, . . . . N-l. 
3: Transform for P*(p, t-At) = (F( V*( ., t + At)))(p), p= -M, -M+ 1, . . . . M- 1. 
4: Continue with steps 4 and 5 of the algorithm in Section 3.2 and complete the 

cycle with V(X,, t + At) := 0. 

The characteristics pseudospectral method requires only two FFTs per time step 
and the operations are performed symmetrically, as in (3.11). 

Linear Stability 

If the method is applied to the linear equation (3.8) the intermediate solution is 

V*(Xj, t + At) = Py)(0; AX, t), 

where 6 = - 6slfi. To simplify the analysis let I= 1 and obtain 

V*(Xj, t+At)=$ [0(0-l) I’(Xj-1, t)+2(1-e2) V(Xj, t)+8(8+ 1) V(Xj+l, t)]. 

This equation may be transformed to Fourier space by means of (2.4) to give 

f*(p, t+At)=i [O(O- l)e-“‘p+2(1-8’)+6(8+ l)e’qp] p(p, t), 

where qP = 2lzp/N. Hence 

~CP, t + At) = GO, P, 8, At) p(p, t), 
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where 

G(s, p, 8, At) = [e’ cos qp + 8i sin vP + 1 - 6’1 I&~~~‘. 

Hence IG[’ = 1 + B2(cos qP - 1)2 (02 - 1) and the method is therefore linearly stable 
if 181 < 1, or, 

At < L/3Nfi. (3.16) 

Similar O(N -’ ) restrictions may be derived for higher values of I: for example, if 
1= 2 the linear stability condition is 181 < 2. The results in Section 4 were obtained 
using the value I = 3. 

3.4. A Quasi-Newton Implicit Scheme 

For notational convenience we denote the discrete approximations to u, ox, and 
oXXX at (Xi, n At) by Vy, ( VX)y, and ( VXXX)T, respectively, and we write the fully 
implicit pseudospectral scheme as 

,;+I- Vj”+;sAt{[V;+l+V;][(Vx);+‘+(Vx);]) 

+~s3At[(Vxxx);+1+(Vxxx);]=0. (3.17) 

This provides a system of N nonlinear equations for 

Vj”+;s3i81
=8]c,2
7;7Tr 13+7 1.0023  Tc;�  Tc;222�9.60is35;7;27]8 0  TD 3178(This )323  Tc;� 48e A t  
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and 

With these approximations the Jacobian has a pentadiagonal structure, and if $,, 
denotes de/a V; + ’ then 

3,j+Z' -5,j,i-2=lc, 9$j+l= -$,j-l= -2K+p(V;+‘+ v;>, 

3,j=1+p(v;T’=:- v;:,‘, + 2dXp( v,,;, 
(3.23) 

where 
s3 At 3sAt 

Ic=4(dx)3 
and 

= 4AX’ 

The elements in the top right-hand corner and in the bottom left-hand corner of the 
Jacobian are set to zero. The l- and 2-soliton solutions vanish near the boundaries 
so the corner contributions may be ignored. In the algorithm below the approxima- 
tions to V( ., (n + 1) At) are denoted by IV(“), v = 0, 1, . . . . and thejth component of 
WV) is W!‘) 

J ’ 

ALGORITHM. Given q, ( V,);, and ( Vxxx)J’ for j = 1,2, . . . . N. 

1. Form T( V( ., n At)) using (3.20). 
2. IV;!):= V;-6s At VJV,)J’-s3 At(T/,,,)~, j= 1,2, . . . . N. 
3. Form the Jacobian, %, as in (3.23) using IVY’, VJ’, and (V,);, j= 1,2, . . . . N. 

Factorise f. 
4. v :=o. 
5. 9q:=qW”‘, V(*, ndt)) + i$( V( ., ndt)), j= 1, 2, . . . . N. 
6. Solve fE= -99, where %?= [%‘i,BZ, . . . . L@~]‘, then 

UI(Y+l):=IVo)+Eandv:=v+l. 
7. Ifv<maxvgoto5. 
8. V;+l := I+‘$“‘, (Vx)J!+’ :=(W~-“)j, (V,)y+’ :=(Wf&!‘)j, j= 1,2, . . . . N. 

With max v = 1 the algorithm requires three FFTs per time step. Accuracy could 
be improved by evaluating derivatives in terms of IV”’ at step 8, or by increasing 
max v. 

4. NUMERICAL RESULTS 

4.1. Soliton Test Problems 

The l- and 2-soliton problems described in Section 2 were solved numerically on 
a discretisation of (x, t) E C-L, L] x [0, T] using the six pseudospectral methods 
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which were discussed in Section 3. For each test integration we fixed the maximum 
acceptable point-wise errordenoted by L,-and adjusted parameters to minimise 
CPU time. Tables I-IV show the computed results for l- and 2-solitons on the 
interval [ -20, 201. Initial conditions were given by (2.1) and (2.2), with k, k,, and 
k, chosen to give the specified amplitudes. The tables show grid spacings 
Ax = 2L/N and At, CPU s, the L, error at the terminating time T, and relative 
errors EC1 and EC2 in discrete approximations to the integrals (2.6) and (2.7). 
Computations were performed on a VAX 8650 computer. 

The computed results show that the semi-implicit scheme of Chan and 
Kerkhoven [2] is the most efficient of the methods tested. The split-step expansion 
scheme is the second most efficient method and it almost becomes competitive with 
the best scheme for the 2-soliton test. The split-step scheme involves only two time 
levels and this is an advantage in extensions to more than one space dimension. The 
Fornberg-Whitham scheme is comparable with the second Chan-Kerkhoven 
scheme and their computational efficiency is approximately half that of the best 
scheme. The characteristics scheme performs as well as the Fornberg-Whitham 
scheme for the 1-soliton problem but it encounters difficulties in the second test: 
indeed, it failed to reach the prescribed accuracy in the large-amplitude 2-soliton 
case. The results produced by the implicit quasi-Newton scheme are interesting: this 
method improves in efficiency relative to the others as the numerical difficulties 
increase. The method was effected crudely with max v = 1 and the results suggest 
that a more careful implementation might produce a good method for situations 
where accuracy rather than computational efficiency is important. This method 
requires further investigation. 

TABLE I 

Comparison of Computing Times for 1 Soliton with 
Amplitude 1 and Initial Location x = 0 on (x, 1) E [ -20,203 x [0, 1 ] 

Scheme 
Ax 
Al CPU s L, EC1 EC2 

(i) For&erg and 
Whitham 

0.625 
0.0186 0.14 0.0049 0.0039 0.024 

(ii) Chan and 0.625 
Kerkhoven I 0.0318 0.17 0.0049 0.0022 0.020 

(iii) Chan and 0.625 
Kerkhoven II 0.0141 0.55 0.0048 0.0035 0.028 

(iv) Split-step 0.625 
expansion 0.0333 0.32 0.0046 0.0044 0.022 

(v) Split-step 0.3125 
characteristics 0.0458 0.58 0.0049 0.000080 0.033 

(vi) Quasi-Newton 0.625 
0.0453 1.40 0.0050 0.0026 0.024 

Note. L, is the point-wise error at t = 1 and EC1 and EC2 give relative errors in approximations 
to the conservation integrals (2.6) and (2.7). Accuracy constraint imposed is L, < 0.005. 
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TABLE II 

Comparison of Computing Times for 1 Soliton with 
Amplitude 2 and Initial Location x = 0 on (x, t) E [ -20,201 x [0,2] 

Scheme 

(i) For&erg and 
Whitham 

(ii) Chan and 
Kerkhoven I 

(iii) Chan and 
Kerkhoven II 

(iv) Split-step 
expansion 

(v) Split-step 
characteristics 

(vi) Quasi-Newton 

Ax 
At 

0.3125 
0.0045 

0.3125 
0.006 

0.3125 
0.0031 

0.3125 
0.007 

0.1562 
0.0117 

0.625 
0.012 

CPU s LC EC1 EC2 

7.38 0.0075 0.00066 0.0047 

3.14 0.0079 OslooO20 0.00056 

9.56 0.0075 0.00013 0.0018 

5.70 0.0076 O.OOQ29 0.0018 

7.81 0.0081 0.00042 0.0042 

4.28 0.0076 0.0021 0.0034 

Note. L, is the point-wise error at t = 2 and EC1 and EC2 give relative errors in approximations 
to the conservation integrals (2.6) and (2.7). Accuracy constraint imposed is L, < 0.008. 

TABLE III 

Comparison of Computing Times for 2 Solitions with Amplitudes 0.5 and 1 and 
Initial Locations x = 0 and x = -2, Respectively, on (x, 1) E [ -20, 201 x [0,2] 

Scheme 
Ax 
A f CPU s L, EC1 EC2 

(i) Fornberg and 
Whitham 

(ii) Chan and 
Kerkhoven I 

(iii) Chan and 
Kerkhoven II 

(iv) Split-step 
expansion 

(v) Split-step 
characteristics 

(vi) Quasi-Newton 

0.625 
0.0185 0.95 0.0020 0.0012 0.0087 

0.625 
0.024 0.45 0.0019 0.0012 0.0091 

0.625 
0.0133 1.24 0.0020 0.0016 0.0064 

0.625 
0.0431 0.50 0.0016 0.00076 0.0088 

0.3125 
0.0032 9.25 0.0021 0.00055 0.0040 

0.625 
0.0022 2.33 0.0019 0.00024 0.0010 

Note. L, is the point-wise error at r = 2 and EC1 and EC2 give relative errors in approximations 
to the conservation integrals (2.6) and (2.7). Accuracy constraint imposed is L, <0.002. 
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TABLE IV 

Comparison of Computing Times for 2 Solitons with Amplitudes 0.5 and 2.5 and 
Initial Locations x = 0 and x = -4.8, respectively, on (x, t) E [ - 20,203 x [O, 41 

Scheme 
Ax 
AI CPU s L, EC1 EC2 

(i) Fornberg and 
Whitham 

(ii) Chan and 
Kerkhoven I 

(iii) Chan and 
Kerkhoven II 

(iv) Split-step 
expansion 

(v) Split-step 
characteristics 

(vi) Quasi-Newton 

0.3125 
0.0029 

24.88 0.015 0.000037 0.0023 

0.3125 
0.0042 

10.57 0.019 0.00019 0.0027 

0.3125 
0.0020 

25.60 0.015 0.00025 0.010 

0.3125 
0.0052 

16.28 0.019 0.00015 0.0034 

0.1562 
0.0035 

* * * * 

0.625 
0.0050 

19.95 0.020 0.0021 0.022 

Nofe. L, is the point-wise error at t = 4 and EC1 and EC2 give relative errors in approximations 
to the conservation integrals (2.6) and (2.7). Accuracy constraint imposed is L, < 0.02. 

As states in Section 1, difference schemes should ideally simulate the conservation 
conditions of the differential equations which are being approximated. It is a simple 
matter to modify some of the above schemes so that, at least for the discretisation 
in space, energy conservation is achieved. Such modifications are advisable in situa- 
tions where accuracy rather than computational efficiency is of prime importance. 
We shall see that the semi-discrete conservation condition is obtained at an 
additional computational cost. 

Suppose the semi-discrete equations are written as a system of nonlinear ordinary 
differential equations in the form 

dV/dr = F(V), (4.1) 

where V = V(t) = [ V(X,,, t), V(X,, t), . . . . V(X,_ i, t)]? If the discretisation is such 
that VTF = 0 then (d/dt)(VTV) = 0 and energy is conserved. This conservation con- 
dition can be extended to the fully-discrete system if discretisation in time is effected 
by means of the scheme 

V “+I-V”=dtF($(V”+V”+‘)) (4.2) 

in the obvious notation. These conditions have been discussed by Sanz-Serna [ 121. 
Consider, for example, the semi-discrete system derived from the Fornberg- 

Whitham scheme (3.1) by forming the limit as At + 0. This limiting process yields 
the ordinary differential equation 

v(A’,, t)= Fj= -6sV(X,, t) P”(X,, t)+.s3P”“(Xj, t), (4.3) 
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where the dot denotes differentiation with respect to time and the spatial derivatives 
are 

V(Xj, I)=; y “i’ pzp~-k)V(Xk, t) 
p= -M k=O 

and 

v(xj, t) = -i Mfl “f’ p3zp(i-k)qxk, t), 
p= --M k=O 

with z = exp(2ni/N). It is readily shown that &!S-ol V(Xj, t) Fj # 0 and the condition 
VTF = 0 is therefore not satisfied. However, if the first term on the right-hand side 
of (4.3) is moditied to 

pzP”-k)V(&, t)[ v(x,, t) + t$f-j, t)] 

p= -M k=O 

then energy conservation is achieved. The modification involves the approximation 
of ovX at (Xi, t) by 

where 

@h t) = P’( -7 t))(~) and W(Xj, t) = [ V(Xj, t)]? 

It is immediately obvious that if leap-frog time discretisation is employed the 
modified scheme requires four FFTs per time-step rather than the three required by 
Fornberg and Whitham. 

To illustrate the beneficial effect of semi-discrete energy conservation we 
integrated the 2-soliton problem on a discretisation of (x, t) E [ -20,203 x [0, a. 
In this test we fixed At and Ax and measured the L, error and the conservation 
errors EC1 and EC2 at the terminating time T. Table V compares results given by 

TABLE V 

Comparison of Scheme (3.1) with Semi-Discrete Energy Conserving Modification 

Scheme 
Ax 
At CPU s LO EC1 EC2 

Leap-frog (3.1) 0.3125 
0.0023 32.01 0.0091 0.00063 0.0079 

Modified (3.1) 0.3125 0.0023 50.02 0.0052 0.000050 0.0079 

Note. Results are for 2 solitons with amplitudes 0.5 and 2.5 and initial locations x=0 and x= -5, 
respectively, on (x, t) E [ -20,203 x [O, 41. L, is the point-wise error at t = 4 and EC1 and EC2 give 
relative errors in approximations to conservation integrals (2.6) and (2.7). 
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scheme (3.1) with those given by the leap-frog discretisation of the semi-discrete 
energy conserving scheme described above. 

It can be seen that the modified scheme is more accurate and, as might be 
expected, it gives a better approximation to the first invariant of the KdV equation. 
Note, of course, that the modified scheme required more computing time for a fixed 
number of time steps. 

The energy conservation achieved by modifying (3.1) is destroyed by the 
explicit time discretisation. The fully discrete energy conservation condition 
[V(t,)]’ V(t,) = constant is obtained by implicit time discretisation as on (4.2). 
This is best illustrated for the quasi-Newton implicit scheme (vi). To achieve energy 
conservation, (3.17) is modified to 

,;+I - v~+~{[v;“+v;‘3[(v,):“+(vx);l+(v;+v;t’):} 

+~s3dtC(vxxx)j”+‘+(Vxxx)i”]=0, 

where (V; + VJf”)i= (F-‘(ipfi(p, t,, $))(Xj), with 

(4.4) 

and 

W(Xj, t,+ f)= [ V(Xj, n At) + V(Xj, (n + 1) At)]** 

This modification leads to a related change in the Jacobian elements (3.23). 

4.2. Recurrence Tests 

A demanding test of the accuracy of a method over a long integration period is 
provided by the ability of the method to reproduce the recurrence phenomenon first 
described by Zabusky and Kruskal [20]. The reader is referred to the original 
paper for details. Here it will suffice to say that a KdV equation is integrated on 
0 d x < 2, t 2 0 using the initial condition cos AX and periodic boundary conditions. 
As time evolves the wave steepens and eventually breaks up to form eight solitons. 
These recombine in stages and the initial state is reproduced at t = TR, where TR 
is approximately 9.7 for the parameters which are employed. In principle, this 
recombination, or recurrence, should occur at times which are integer multiples of 
T,. Here we examine the ability of some of the pseudospectral methods of Section 3 
to reproduce the first recombination of solitons at t = TR. 

We found that the best results on the recurrence problem were produced by the 
semi-implicit scheme of Chan and Kerkhoven. Figure 1 shows the solution 
produced by thig scheme at several values of time up to t = TR. Apart from this 
semi-implicit method the only scheme which performed well on the recurrence 
problem was the split-step expansion method. This method reproduced the two 
solitons at t = $TR, but the solution at t = TR is a poor imitation of the initial 
profile: this is seen in Fig. 2. The solutions produced by the other four methods 
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-24 
0.00 0.50 1 .QO I .so 2.00 

-2L 
0.00 0.50 1 .oo 1.50 2.00 

t z4.7 

-2 
0.00 0.50 1 .oo 1 .so 2.00 

4- 
6 

3. 

2. t : 2.3 

1. 

0. 

-I_ 

0’. 00 0'.50 l'.OO 1'.50 2'.00 

FIG. 1. Solution of the recurrence problem by Chan-Kerkhoven I. The figures show the solution 
profile at the specified times. Results were obtained using N = 128 and At = 0.0035. 

58118312-7 
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00 0.50 1 .oo 1.50 2.00 

FIG. 2. Solution of the recurrence problem at t = 9.7 by the split-step expansion method. Results 
were obtained using N = 256 and Ar = 1.14 x 10m4. 

became unstable before t = 6, whereas the semi-implicit and the split-step expansion 
schemes were integrated to t = 2T, with no evidence of blowup. It is of interest to 
note that the Fornberg-Whitham scheme became unstable at approximately t = 5.6, 
while the semi-conservative modification of this scheme did not exhibit blowup 
until t = 15. This demonstrates the stabilising effect of the conservation property. 

5. CONCLUSIONS 

Six Fourier pseudospectral methods have been tested for computational efficiency 
and accuracy. The best scheme in all the tests is the scheme by Chan and 
Kerkhoven [2] which integrates in Fourier space using 2 FFTs per time step. The 
scheme treats the nonlinear term using leap-frog in time and it therefore uses three 
time levels. A useful scheme which uses only two time levels is the split-step expan- 
sion scheme. The one-step property should be useful in extensions to two spaces 
dimensions. 

It has been shown that many schemes can be made conservative with respect to 
the space discretisation at an increased computational cost. The advantages to be 
gained by this conservation property have been demonstrated. A fully discrete, 
implicit scheme which is energy-conserving has been discussed. This scheme 
requires further investigation. 

It is of some interest to know how the best Fourier pseudospectral method 
identified in this study compares with the best method in the study by Taha and 
Ablowitz [17]. Accordingly, the Chan and Kerkhoven scheme was compared with 
the Taha and Ablowitz local scheme on the l- and 2-soliton problems. The reader 
is referred to the paper by Taha and Ablowitz [ 171 for details of their local scheme. 
Table VI shows the normalised computing times for tests 1, 2, 3, and 4, where test 
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TABLE VI 

Chan and Kerkhoven I 

Ax 
At 
LC 
Normalised CPU 

Test 1 Test 2 

0.625 0.4 
0.032 0.0058 
0.0049 0.0075 
1 1 

Test 3 

0.625 
0.024 
0.0020 
1 

Test 4 

0.4 
0.0042 
0.019 
1 

Taha and Ablowitz local 

Ax 0.2857 0.1333 0.1538 0.07143 
At 0.21 0.05 0.16 0.05 
L, 0.0047 0.0053 0.0018 0.013 
Normalised CPU 0.76 0.88 1.40 1.43 

i is that described by table i (i= 1,2, 3,4). The computing times are normalised so 
that the Chan and Kerkhoven time is one unit for each of the tests. 

In the comparison of pseudospectral methods as described in Tables I-IV the 
selection of data parameters was simplified by constraining N to be a power of 2. 
The FFT algorithm used is efficient provided N contains no factors other than 
powers of the primes 2, 3, and 5, and this flexibility has been exploited in Table VI. 

The results show that the local scheme is more efficient than the pseudospectral 
scheme on the 1-soliton problem, but less efficient on the more difficult 2-soliton 
problem. However, the differences in computing times are not large, and the results 
support the claim by Taha and Ablowitz that finite difference schemes based on the 
inverse scattering transform (NT) provide good approximations for equations 
which are solvable by the IST. 
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